perception¶
perception
provides flexible, well-documented, and comprehensively tested tooling for perceptual hashing
research, development, and production use. It provides a common wrapper around existing, popular perceptual hashes
(such as those implemented by ImageHash)
along with tools to compare their performance and use them for common tasks.
Perceptual hashes are used to create compact image “fingerprints” which are invariant to small alterations to the original image. Typically, the representations are compact enough that they are irreversible, which makes them useful for deduplication and detecting abusive content while preserving the privacy of content owners.
Installation¶
You can install perception
using pip. You must install OpenCV separately (e.g., with pip install opencv-python
).
# Install from PyPi
pip install perception
# Install from GitHub
pip install git+https://github.com/thorn-oss/perception.git#egg=perception
To install with the necessary dependencies for benchmarking, use:
# Install from PyPi
pip install perception[benchmarking]
# Install from GitHub
pip install opencv-python git+https://github.com/thorn-oss/perception.git#egg=perception[benchmarking]
Getting Started¶
Please see the examples for code snippets for common use cases.
Examples¶
Media Deduplication¶
Perceptual hashes can be used to deduplicate sets of images. Below we provide two examples (one simple, one larger scale).
For most use cases, we recommend using PHash with hash_size=16
and
with 0.2 as the distance threshold as in the example below. You may wish to adjust
this threshold up or down based on your tolerance for false negatives / positives.
In practice, deduplicating in memory on your machine by the methods below may be impractical. For larger-scale applications, you may wish to use tools like FAISS, Annoy, or databases with functionality for querying based on distance such as MemSQL.
For the supported hashers, below are our recommended thresholds with expected false positive rates of <1%.
hasher | threshold |
---|---|
ahash (hash_size=16) | 0.008 |
blockmean | 0.008 |
dhash (hash_size=16) | 0.07 |
marrhildreth | 0.1 |
pdq | 0.2 |
phash (hash_size=16) | 0.2 |
wavelet (hash_size=16) | 0.02 |
Simple example¶
In this example, we download a ZIP file containing 18 images. One of the images is duplicated twice and another image is duplicated once.
import os
import glob
import zipfile
import urllib.request
import tabulate
import pandas as pd
from perception import tools, hashers
urllib.request.urlretrieve(
"https://thorn-perception.s3.amazonaws.com/thorn-perceptual-deduplication-example.zip",
"thorn-perceptual-deduplication-example.zip"
)
with zipfile.ZipFile('thorn-perceptual-deduplication-example.zip') as f:
f.extractall('.')
filepaths = glob.glob('thorn-perceptual-deduplication-example/*.jpg')
duplicate_pairs = tools.deduplicate(files=filepaths, hashers=[(hashers.PHash(hash_size=16), 0.2)])
print(tabulate.tabulate(pd.DataFrame(duplicate_pairs), showindex=False, headers=['file1', 'file2'], tablefmt='rst'))
# Now we can do whatever we want with the duplicates. We could just delete
# the first entry in each pair or manually verify the pairs to ensure they
# are, in fact duplicates.
file1 | file2 |
---|---|
thorn-perceptual-deduplication-example/309b.jpg | thorn-perceptual-deduplication-example/309.jpg |
thorn-perceptual-deduplication-example/309b.jpg | thorn-perceptual-deduplication-example/309a.jpg |
thorn-perceptual-deduplication-example/309a.jpg | thorn-perceptual-deduplication-example/309.jpg |
thorn-perceptual-deduplication-example/315a.jpg | thorn-perceptual-deduplication-example/315.jpg |
Real-world example¶
In the example below, we use the Caltech 256 Categories dataset. Like most other public image datasets, it contains a handful of duplicates in some categories.
The code below will:
- Download the dataset
- Group all the filepaths by category (the dataset is provided in folders)
- Within each group, find duplicates using PHash. We will compare not just the original images, but also the 8 isometric transformations for each image.
import os
import tarfile
from glob import glob
import urllib.request
import tqdm
from perception import hashers, tools
urllib.request.urlretrieve(
"http://www.vision.caltech.edu/Image_Datasets/Caltech256/256_ObjectCategories.tar",
"256_ObjectCategories.tar"
)
with tarfile.open('256_ObjectCategories.tar') as tfile:
tfile.extractall()
files = glob('256_ObjectCategories/**/*.jpg')
# To reduce the number of pairwise comparisons,
# we can deduplicate within each image category
# (i.e., we don't need to compare images of
# butterflies with images of chess boards).
filepath_group = [
(
filepath,
os.path.normpath(filepath).split(os.sep)[-2]
) for filepath in files
]
groups = list(set([group for _, group in filepath_group]))
# We consider any pair of images with a PHash distance of < 0.2 as
# as a duplicate.
comparison_hashers = [(hashers.PHash(hash_size=16), 0.2)]
duplicate_pairs = []
for current_group in groups:
current_filepaths = [
filepath for filepath, group in filepath_group if group == current_group
]
current_duplicate_pairs = tools.deduplicate(
files=current_filepaths,
hashers=comparison_hashers,
isometric=True,
progress=tqdm.tqdm
)
duplicate_pairs.extend(current_duplicate_pairs)
# Now we can do whatever we want with the duplicates. We could just delete
# the first entry in each pair or manually verify the pairs to ensure they
# are, in fact duplicates.
Video deduplication¶
Video deduplication requires more thought depending on your tolerance for false positives and how important temporal relationships are. Below is one example approach for deduplicating a group of videos by taking frames from each video that are sufficiently different from each other (to avoid keeping too many) and then using them all to find pairs of videos that have matching frames.
import urllib.request
import zipfile
import glob
import tqdm
import perception.hashers
import perception.tools
hasher = perception.hashers.PHash(hash_size=16)
# Download some example videos.
urllib.request.urlretrieve(
"https://thorn-perception.s3.amazonaws.com/thorn-perceptual-video-deduplication-example.zip",
"thorn-perceptual-video-deduplication-example.zip"
)
with zipfile.ZipFile('thorn-perceptual-video-deduplication-example.zip') as f:
f.extractall('.')
# Set a threshold for matching frames within videos and across videos.
intravideo_threshold = 0.1
intervideo_threshold = 0.2
files = glob.glob('thorn-perceptual-video-deduplication-example/*.m4v') + \
glob.glob('thorn-perceptual-video-deduplication-example/*.gif')
hashes = []
for f in tqdm.tqdm(files):
previous = None
for frame, _, _ in perception.hashers.tools.read_video(f, frames_per_second=1):
current, quality = hasher.compute_with_quality(frame, hash_format='vector')
if quality < 90 or (
previous is not None and
hasher.compute_distance(current, previous) < intravideo_threshold
):
# This frame is either low quality or too similar to the previous frame
continue
previous = current
hashes.append((f, current))
duplicates = perception.tools.deduplicate_hashes(
hashes=hashes,
threshold=intervideo_threshold,
hasher=hasher
)
Detecting Child Sexual Abuse Material¶
Using perception and a subscription to Thorn’s Safer service, you can easily check for child sexual abuse material against a database of known bad content without having to send any images to a third party. You do this by sending compact, irreversible image hashes to get matches with a high degree of precision. We support matching using 16x16 PHash hashes and md5 hashes.
See usage example below. Please contact info@getsafer.io to discuss Thorn’s Safer service and subscription options and visit getsafer.io to learn more.
from perception import tools
matcher = tools.SaferMatcher(
api_key='YOUR_API_KEY',
url='MATCHING_SERVICE_URL'
)
matches = matcher.match(['myfile.jpg'])
In some cases, you may have a username/password instead of an API key, in which case you can pass those instead (see API documentation for details).
Benchmarking¶
This package provides a fair amount of infrastructure for benchmarking different hashers to evaluate their performance. The below example does the following:
- Download a benchmarking dataset (we provide a dataset with images that have compatible licensing for this example)
- Load the dataset. If you are using your own datasets, you may wish to call deduplicate on it to ensure no duplicates are included.
- Transform the dataset to generate synthetic images.
- Define a new custom hasher that we want to evaluate. It’s not very good – but demonstrates how you can evaluate your own custom hash functions.
- Compute all the hashes.
- Report metrics for each image category / hasher / transformation combination.
import os
import glob
import zipfile
import urllib.request
import cv2
import imgaug
import tabulate # Optional: Only used for generating tables for the Sphinx documentation
import numpy as np
from perception import benchmarking, hashers
urllib.request.urlretrieve(
"https://thorn-perception.s3.amazonaws.com/thorn-perceptual-benchmark-v0.zip",
"thorn-perceptual-benchmark-v0.zip"
)
with zipfile.ZipFile('thorn-perceptual-benchmark-v0.zip') as f:
f.extractall('.')
# Load the dataset
dataset = benchmarking.BenchmarkImageDataset.from_tuples(files=[
(filepath, filepath.split(os.path.sep)[-2]) for filepath in glob.glob(
os.path.join('thorn-perceptual-benchmark-v0', '**', '*.jpg')
)
])
# Define the transforms we want to use for
# evaluation hash quality.
def watermark(image):
fontScale = 5
thickness = 5
text = "TEXT"
fontFace = cv2.FONT_HERSHEY_SIMPLEX
targetWidth = 0.2*image.shape[1]
(textWidth, textHeight), _ = cv2.getTextSize(
text="TEST",
fontFace=fontFace,
fontScale=fontScale,
thickness=thickness
)
fontScaleCorr = targetWidth / textWidth
textHeight *= fontScaleCorr
textWidth *= fontScaleCorr
fontScale *= fontScaleCorr
org = ( textHeight, image.shape[0] - textHeight )
org = tuple(map(int, org))
color = (0, 0, 0, 200)
placeholder = cv2.putText(
img=np.zeros(image.shape[:2] + (4, ), dtype='uint8'),
text="TEST",
org=org,
color=color,
fontFace=fontFace,
fontScale=fontScale,
thickness=thickness
).astype('float32')
augmented = (
(image.astype('float32')[..., :3]*(255 - placeholder[..., 3:]) + placeholder[..., :3]*placeholder[..., 3:])
) / 255
return augmented.astype('uint8')
def vignette(image):
height, width = image.shape[:2]
a = cv2.getGaussianKernel(height, height/2)
b = cv2.getGaussianKernel(width, width/2)
c = (b.T*a)[..., np.newaxis]
d = c/c.max()
e = image*d
return e.astype('uint8')
transforms={
'watermark': watermark,
'blur2': imgaug.augmenters.GaussianBlur(sigma=2.0),
'vignette': vignette,
'gamma2': imgaug.augmenters.GammaContrast(gamma=2),
'jpeg95': imgaug.augmenters.JpegCompression(95),
'pad0.2': imgaug.augmenters.Pad(percent=((0.2, 0.2), (0, 0), (0.2, 0.2), (0, 0)), keep_size=False),
'crop0.05': imgaug.augmenters.Crop(percent=((0.05, 0.05), (0.05, 0.05), (0.05, 0.05), (0.05, 0.05)), keep_size=False),
'noise0.2': imgaug.augmenters.AdditiveGaussianNoise(scale=0.2*255),
'rotate4': imgaug.augmenters.Affine(rotate=4),
'noop': imgaug.augmenters.Resize({"longer-side": 256, "shorter-side": "keep-aspect-ratio"}),
}
# Compute the transformed versions of the images.
# This takes a while but you can reload the
# generated dataset without recomputing it (see next line).
transformed = dataset.transform(
transforms=transforms,
storage_dir='transformed',
errors="raise"
)
# We don't actually have to do this, but it shows
# how to reload the transformed dataset later.
transformed = benchmarking.BenchmarkImageTransforms.load(
path_to_zip_or_directory='transformed', verify_md5=False
)
# Create a new hash that we want to evaluate.
# perception will handle most of the plumbing but
# we do have to specify a few things.
class ShrinkHash(hashers.Hasher):
"""This is a simple hash to demonstrate how you
can create your own hasher and compare it to others.
It just shrinks images to 8x8 pixels and then flattens
the result.
"""
# We have to let perception know
# the shape and type of our hash.
hash_length = 64
dtype = 'uint8'
# We need to specify how distance is
# computed between hashes.
distance_metric = 'euclidean'
def _compute(self, image):
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
resized = cv2.resize(gray, dsize=(8, 8))
return resized.flatten()
hashers_dict = {
'ahash': hashers.AverageHash(hash_size=16),
'dhash': hashers.DHash(hash_size=16),
'pdq': hashers.PDQHash(),
'phash': hashers.PHash(hash_size=16),
'marrhildreth': hashers.MarrHildreth(),
'wavelet': hashers.WaveletHash(hash_size=16),
'blockmean': hashers.BlockMean(),
'shrinkhash': ShrinkHash()
}
# Compute the hashes
hashes = transformed.compute_hashes(hashers=hashers_dict)
# Get performance metrics (i.e., recall) for each hash function based on
# a false positive rate tolerance threshold. Here we use 0.01%
fpr_threshold = 1e-4
# The metrics are just pandas dataframes. We use tabulate here to obtain the tables
# formatted for the documentation.
metrics = hashes.compute_threshold_recall(fpr_threshold=fpr_threshold).reset_index()
print(tabulate.tabulate(metrics, showindex=False, headers=metrics.columns, tablefmt='rst'))
metrics_by_transform = hashes.compute_threshold_recall(grouping=['transform_name'], fpr_threshold=fpr_threshold).reset_index()
print(tabulate.tabulate(metrics_by_transform, showindex=False, headers=metrics_by_transform.columns, tablefmt='rst'))
metrics_simple = hashes.compute_threshold_recall(grouping=[], fpr_threshold=fpr_threshold).reset_index()
print(tabulate.tabulate(metrics_simple, showindex=False, headers=metrics_simple.columns, tablefmt='rst'))
category | transform_name | hasher_name | threshold | recall | fpr | n_exemplars |
---|---|---|---|---|---|---|
paintings | blur2 | ahash | 0.0117188 | 66.062 | 0 | 2204 |
paintings | blur2 | blockmean | 0.0134298 | 87.432 | 0 | 2204 |
paintings | blur2 | dhash | 0.132812 | 100 | 0 | 2204 |
paintings | blur2 | marrhildreth | 0.126736 | 100 | 0 | 2204 |
paintings | blur2 | pdq | 0.117188 | 100 | 0 | 2204 |
paintings | blur2 | phash | 0.09375 | 100 | 0 | 2204 |
paintings | blur2 | shrinkhash | 61.441 | 43.829 | 0 | 2204 |
paintings | blur2 | wavelet | 0.015625 | 65.926 | 0 | 2204 |
paintings | crop0.05 | ahash | 0.0078125 | 0.227 | 0 | 2204 |
paintings | crop0.05 | blockmean | 0.0144628 | 0.408 | 0 | 2204 |
paintings | crop0.05 | dhash | 0.222656 | 11.298 | 0 | 2204 |
paintings | crop0.05 | marrhildreth | 0.215278 | 3.857 | 0 | 2204 |
paintings | crop0.05 | pdq | 0.265625 | 11.298 | 0 | 2204 |
paintings | crop0.05 | phash | 0.234375 | 8.757 | 0 | 2204 |
paintings | crop0.05 | shrinkhash | 95.5667 | 2.314 | 0 | 2204 |
paintings | crop0.05 | wavelet | 0.015625 | 0.318 | 0 | 2204 |
paintings | gamma2 | ahash | 0.0078125 | 2.586 | 0 | 2204 |
paintings | gamma2 | blockmean | 0.00826446 | 2.269 | 0 | 2204 |
paintings | gamma2 | dhash | 0.175781 | 98.82 | 0 | 2204 |
paintings | gamma2 | marrhildreth | 0.163194 | 99.501 | 0 | 2204 |
paintings | gamma2 | pdq | 0.164062 | 100 | 0 | 2204 |
paintings | gamma2 | phash | 0.164062 | 100 | 0 | 2204 |
paintings | gamma2 | shrinkhash | 180.69 | 0.045 | 0 | 2204 |
paintings | gamma2 | wavelet | 0.015625 | 18.603 | 0 | 2204 |
paintings | jpeg95 | ahash | 0.0117188 | 29.9 | 0 | 2204 |
paintings | jpeg95 | blockmean | 0.0134298 | 38.612 | 0 | 2204 |
paintings | jpeg95 | dhash | 0.191406 | 92.604 | 0 | 2204 |
paintings | jpeg95 | marrhildreth | 0.166667 | 85.844 | 0 | 2204 |
paintings | jpeg95 | pdq | 0.25 | 100 | 0 | 2204 |
paintings | jpeg95 | phash | 0.25 | 100 | 0 | 2204 |
paintings | jpeg95 | shrinkhash | 66.7008 | 46.597 | 0 | 2204 |
paintings | jpeg95 | wavelet | 0.015625 | 19.419 | 0 | 2204 |
paintings | noise0.2 | ahash | 0.0078125 | 6.352 | 0 | 2204 |
paintings | noise0.2 | blockmean | 0.0154959 | 21.779 | 0 | 2204 |
paintings | noise0.2 | dhash | 0.238281 | 90.699 | 0 | 2204 |
paintings | noise0.2 | marrhildreth | 0.166667 | 72.096 | 0 | 2204 |
paintings | noise0.2 | pdq | 0.28125 | 99.501 | 0 | 2204 |
paintings | noise0.2 | phash | 0.273438 | 99.909 | 0 | 2204 |
paintings | noise0.2 | shrinkhash | 154.729 | 0.635 | 0 | 2204 |
paintings | noise0.2 | wavelet | 0.0078125 | 1.407 | 0 | 2204 |
paintings | noop | ahash | 0 | 100 | 0 | 2204 |
paintings | noop | blockmean | 0 | 100 | 0 | 2204 |
paintings | noop | dhash | 0 | 100 | 0 | 2204 |
paintings | noop | marrhildreth | 0 | 100 | 0 | 2204 |
paintings | noop | pdq | 0 | 100 | 0 | 2204 |
paintings | noop | phash | 0 | 100 | 0 | 2204 |
paintings | noop | shrinkhash | 0 | 100 | 0 | 2204 |
paintings | noop | wavelet | 0 | 100 | 0 | 2204 |
paintings | pad0.2 | ahash | 0.0820312 | 0.045 | 0 | 2204 |
paintings | pad0.2 | blockmean | 0.0950413 | 0.045 | 0 | 2204 |
paintings | pad0.2 | dhash | 0.214844 | 1.27 | 0 | 2204 |
paintings | pad0.2 | marrhildreth | 0.220486 | 0.045 | 0 | 2204 |
paintings | pad0.2 | pdq | 0.296875 | 2.586 | 0 | 2204 |
paintings | pad0.2 | phash | 0.28125 | 3.448 | 0 | 2204 |
paintings | pad0.2 | shrinkhash | 153.981 | 0.227 | 0 | 2204 |
paintings | pad0.2 | wavelet | 0.109375 | 0 | 0 | 2204 |
paintings | rotate4 | ahash | 0.0429688 | 4.083 | 0 | 2204 |
paintings | rotate4 | blockmean | 0.0392562 | 3.448 | 0 | 2204 |
paintings | rotate4 | dhash | 0.210938 | 40.245 | 0 | 2204 |
paintings | rotate4 | marrhildreth | 0.229167 | 64.201 | 0 | 2204 |
paintings | rotate4 | pdq | 0.28125 | 61.388 | 0 | 2204 |
paintings | rotate4 | phash | 0.265625 | 66.924 | 0 | 2204 |
paintings | rotate4 | shrinkhash | 69.4622 | 2.858 | 0 | 2204 |
paintings | rotate4 | wavelet | 0.0390625 | 0.635 | 0 | 2204 |
paintings | vignette | ahash | 0.046875 | 7.623 | 0 | 2204 |
paintings | vignette | blockmean | 0.0485537 | 8.53 | 0 | 2204 |
paintings | vignette | dhash | 0.125 | 34.256 | 0 | 2204 |
paintings | vignette | marrhildreth | 0.177083 | 77.813 | 0 | 2204 |
paintings | vignette | pdq | 0.132812 | 100 | 0 | 2204 |
paintings | vignette | phash | 0.132812 | 100 | 0 | 2204 |
paintings | vignette | shrinkhash | 103.015 | 3.312 | 0 | 2204 |
paintings | vignette | wavelet | 0.0546875 | 5.172 | 0 | 2204 |
paintings | watermark | ahash | 0.0078125 | 31.307 | 0 | 2204 |
paintings | watermark | blockmean | 0.0134298 | 47.55 | 0 | 2204 |
paintings | watermark | dhash | 0.0664062 | 100 | 0 | 2204 |
paintings | watermark | marrhildreth | 0.0711806 | 100 | 0 | 2204 |
paintings | watermark | pdq | 0.28125 | 99.138 | 0 | 2204 |
paintings | watermark | phash | 0.289062 | 99.682 | 0 | 2204 |
paintings | watermark | shrinkhash | 104.723 | 75.635 | 0 | 2204 |
paintings | watermark | wavelet | 0.015625 | 51.18 | 0 | 2204 |
photographs | blur2 | ahash | 0.0195312 | 80.788 | 0 | 1650 |
photographs | blur2 | blockmean | 0.0330579 | 97.818 | 0 | 1650 |
photographs | blur2 | dhash | 0.0898438 | 96.303 | 0 | 1650 |
photographs | blur2 | marrhildreth | 0.102431 | 96.97 | 0 | 1650 |
photographs | blur2 | pdq | 0.304688 | 99.939 | 0 | 1650 |
photographs | blur2 | phash | 0.179688 | 100 | 0 | 1650 |
photographs | blur2 | shrinkhash | 116.09 | 42.303 | 0 | 1650 |
photographs | blur2 | wavelet | 0.0234375 | 78.303 | 0 | 1650 |
photographs | crop0.05 | ahash | 0.0117188 | 0.242 | 0 | 1650 |
photographs | crop0.05 | blockmean | 0.0278926 | 0.848 | 0 | 1650 |
photographs | crop0.05 | dhash | 0.101562 | 1.333 | 0 | 1650 |
photographs | crop0.05 | marrhildreth | 0.175347 | 3.152 | 0 | 1650 |
photographs | crop0.05 | pdq | 0.320312 | 38.485 | 0 | 1650 |
photographs | crop0.05 | phash | 0.335938 | 73.394 | 0 | 1650 |
photographs | crop0.05 | shrinkhash | 128.222 | 1.212 | 0 | 1650 |
photographs | crop0.05 | wavelet | 0.0234375 | 0.424 | 0 | 1650 |
photographs | gamma2 | ahash | 0.0195312 | 10.606 | 0 | 1650 |
photographs | gamma2 | blockmean | 0.0278926 | 18.242 | 0 | 1650 |
photographs | gamma2 | dhash | 0.105469 | 91.636 | 0 | 1650 |
photographs | gamma2 | marrhildreth | 0.121528 | 92.303 | 0 | 1650 |
photographs | gamma2 | pdq | 0.195312 | 100 | 0 | 1650 |
photographs | gamma2 | phash | 0.234375 | 100 | 0 | 1650 |
photographs | gamma2 | shrinkhash | 121.569 | 0.545 | 0 | 1650 |
photographs | gamma2 | wavelet | 0.0234375 | 19.152 | 0 | 1650 |
photographs | jpeg95 | ahash | 0.0117188 | 33.576 | 0 | 1650 |
photographs | jpeg95 | blockmean | 0.0299587 | 84.424 | 0 | 1650 |
photographs | jpeg95 | dhash | 0.117188 | 77.273 | 0 | 1650 |
photographs | jpeg95 | marrhildreth | 0.109375 | 73.333 | 0 | 1650 |
photographs | jpeg95 | pdq | 0.4375 | 99.939 | 0 | 1650 |
photographs | jpeg95 | phash | 0.335938 | 99.879 | 0 | 1650 |
photographs | jpeg95 | shrinkhash | 124.78 | 83.758 | 0 | 1650 |
photographs | jpeg95 | wavelet | 0.0234375 | 44.727 | 0 | 1650 |
photographs | noise0.2 | ahash | 0.0195312 | 34.909 | 0 | 1650 |
photographs | noise0.2 | blockmean | 0.036157 | 72.121 | 0 | 1650 |
photographs | noise0.2 | dhash | 0.167969 | 69.03 | 0 | 1650 |
photographs | noise0.2 | marrhildreth | 0.119792 | 56.182 | 0 | 1650 |
photographs | noise0.2 | pdq | 0.34375 | 99.758 | 0 | 1650 |
photographs | noise0.2 | phash | 0.320312 | 99.818 | 0 | 1650 |
photographs | noise0.2 | shrinkhash | 190.137 | 24 | 0 | 1650 |
photographs | noise0.2 | wavelet | 0.0234375 | 23.03 | 0 | 1650 |
photographs | noop | ahash | 0 | 100 | 0 | 1650 |
photographs | noop | blockmean | 0 | 100 | 0 | 1650 |
photographs | noop | dhash | 0 | 100 | 0 | 1650 |
photographs | noop | marrhildreth | 0 | 100 | 0 | 1650 |
photographs | noop | pdq | 0 | 100 | 0 | 1650 |
photographs | noop | phash | 0 | 100 | 0 | 1650 |
photographs | noop | shrinkhash | 0 | 100 | 0 | 1650 |
photographs | noop | wavelet | 0 | 100 | 0 | 1650 |
photographs | pad0.2 | ahash | 0.046875 | 0.121 | 0 | 1650 |
photographs | pad0.2 | blockmean | 0.0588843 | 0.061 | 0 | 1650 |
photographs | pad0.2 | dhash | 0.109375 | 0.667 | 0 | 1650 |
photographs | pad0.2 | marrhildreth | 0.190972 | 0.182 | 0 | 1650 |
photographs | pad0.2 | pdq | 0.289062 | 1.515 | 0 | 1650 |
photographs | pad0.2 | phash | 0.296875 | 4.606 | 0 | 1650 |
photographs | pad0.2 | shrinkhash | 164.593 | 0.121 | 0 | 1650 |
photographs | pad0.2 | wavelet | 0.0820312 | 0 | 0 | 1650 |
photographs | rotate4 | ahash | 0.03125 | 2.545 | 0 | 1650 |
photographs | rotate4 | blockmean | 0.0382231 | 4.242 | 0 | 1650 |
photographs | rotate4 | dhash | 0.0976562 | 3.333 | 0 | 1650 |
photographs | rotate4 | marrhildreth | 0.159722 | 7.394 | 0 | 1650 |
photographs | rotate4 | pdq | 0.3125 | 78.121 | 0 | 1650 |
photographs | rotate4 | phash | 0.320312 | 92.182 | 0 | 1650 |
photographs | rotate4 | shrinkhash | 132.944 | 4.788 | 0 | 1650 |
photographs | rotate4 | wavelet | 0.015625 | 0.182 | 0 | 1650 |
photographs | vignette | ahash | 0.03125 | 9.152 | 0 | 1650 |
photographs | vignette | blockmean | 0.0330579 | 10.242 | 0 | 1650 |
photographs | vignette | dhash | 0.0742188 | 24.606 | 0 | 1650 |
photographs | vignette | marrhildreth | 0.0954861 | 38.606 | 0 | 1650 |
photographs | vignette | pdq | 0.117188 | 100 | 0 | 1650 |
photographs | vignette | phash | 0.125 | 100 | 0 | 1650 |
photographs | vignette | shrinkhash | 133.364 | 10.727 | 0 | 1650 |
photographs | vignette | wavelet | 0.0234375 | 4.424 | 0 | 1650 |
photographs | watermark | ahash | 0.0195312 | 48 | 0 | 1650 |
photographs | watermark | blockmean | 0.0258264 | 59.697 | 0 | 1650 |
photographs | watermark | dhash | 0.078125 | 100 | 0 | 1650 |
photographs | watermark | marrhildreth | 0.114583 | 98.242 | 0 | 1650 |
photographs | watermark | pdq | 0.351562 | 99.879 | 0 | 1650 |
photographs | watermark | phash | 0.320312 | 99.758 | 0 | 1650 |
photographs | watermark | shrinkhash | 142.317 | 78.242 | 0 | 1650 |
photographs | watermark | wavelet | 0.0234375 | 51.515 | 0 | 1650 |
transform_name | hasher_name | threshold | recall | fpr | n_exemplars |
---|---|---|---|---|---|
blur2 | ahash | 0.0117188 | 62.247 | 0 | 3854 |
blur2 | blockmean | 0.0134298 | 82.045 | 0 | 3854 |
blur2 | dhash | 0.0898438 | 98.054 | 0 | 3854 |
blur2 | marrhildreth | 0.102431 | 98.651 | 0 | 3854 |
blur2 | pdq | 0.304688 | 99.974 | 0 | 3854 |
blur2 | phash | 0.179688 | 100 | 0 | 3854 |
blur2 | shrinkhash | 61.441 | 28.23 | 0 | 3854 |
blur2 | wavelet | 0.015625 | 59.964 | 0 | 3854 |
crop0.05 | ahash | 0.0078125 | 0.208 | 0 | 3854 |
crop0.05 | blockmean | 0.0144628 | 0.337 | 0 | 3854 |
crop0.05 | dhash | 0.101562 | 0.597 | 0 | 3854 |
crop0.05 | marrhildreth | 0.175347 | 1.635 | 0 | 3854 |
crop0.05 | pdq | 0.265625 | 11.598 | 0 | 3854 |
crop0.05 | phash | 0.234375 | 9.185 | 0 | 3854 |
crop0.05 | shrinkhash | 95.5667 | 1.427 | 0 | 3854 |
crop0.05 | wavelet | 0.015625 | 0.259 | 0 | 3854 |
gamma2 | ahash | 0.0078125 | 2.647 | 0 | 3854 |
gamma2 | blockmean | 0.00826446 | 2.335 | 0 | 3854 |
gamma2 | dhash | 0.105469 | 91.048 | 0 | 3854 |
gamma2 | marrhildreth | 0.121528 | 95.381 | 0 | 3854 |
gamma2 | pdq | 0.195312 | 100 | 0 | 3854 |
gamma2 | phash | 0.234375 | 100 | 0 | 3854 |
gamma2 | shrinkhash | 112.911 | 0.182 | 0 | 3854 |
gamma2 | wavelet | 0.015625 | 15.153 | 0 | 3854 |
jpeg95 | ahash | 0.0117188 | 31.474 | 0 | 3854 |
jpeg95 | blockmean | 0.0134298 | 39.673 | 0 | 3854 |
jpeg95 | dhash | 0.117188 | 64.037 | 0 | 3854 |
jpeg95 | marrhildreth | 0.109375 | 66.762 | 0 | 3854 |
jpeg95 | pdq | 0.273438 | 99.87 | 0 | 3854 |
jpeg95 | phash | 0.335938 | 99.948 | 0 | 3854 |
jpeg95 | shrinkhash | 66.7008 | 33.083 | 0 | 3854 |
jpeg95 | wavelet | 0.015625 | 21.069 | 0 | 3854 |
noise0.2 | ahash | 0.0078125 | 7.421 | 0 | 3854 |
noise0.2 | blockmean | 0.0154959 | 23.638 | 0 | 3854 |
noise0.2 | dhash | 0.167969 | 63.83 | 0 | 3854 |
noise0.2 | marrhildreth | 0.119792 | 46.341 | 0 | 3854 |
noise0.2 | pdq | 0.28125 | 99.559 | 0 | 3854 |
noise0.2 | phash | 0.273438 | 99.87 | 0 | 3854 |
noise0.2 | shrinkhash | 154.729 | 0.934 | 0 | 3854 |
noise0.2 | wavelet | 0.0078125 | 1.635 | 0 | 3854 |
noop | ahash | 0 | 100 | 0 | 3854 |
noop | blockmean | 0 | 100 | 0 | 3854 |
noop | dhash | 0 | 100 | 0 | 3854 |
noop | marrhildreth | 0 | 100 | 0 | 3854 |
noop | pdq | 0 | 100 | 0 | 3854 |
noop | phash | 0 | 100 | 0 | 3854 |
noop | shrinkhash | 0 | 100 | 0 | 3854 |
noop | wavelet | 0 | 100 | 0 | 3854 |
pad0.2 | ahash | 0.046875 | 0.052 | 0 | 3854 |
pad0.2 | blockmean | 0.0588843 | 0.026 | 0 | 3854 |
pad0.2 | dhash | 0.109375 | 0.285 | 0 | 3854 |
pad0.2 | marrhildreth | 0.190972 | 0.104 | 0 | 3854 |
pad0.2 | pdq | 0.289062 | 1.738 | 0 | 3854 |
pad0.2 | phash | 0.28125 | 3.269 | 0 | 3854 |
pad0.2 | shrinkhash | 136.11 | 0.078 | 0 | 3854 |
pad0.2 | wavelet | 0.0820312 | 0 | 0 | 3854 |
rotate4 | ahash | 0.03125 | 1.946 | 0 | 3854 |
rotate4 | blockmean | 0.0382231 | 3.503 | 0 | 3854 |
rotate4 | dhash | 0.0976562 | 1.583 | 0 | 3854 |
rotate4 | marrhildreth | 0.159722 | 6.046 | 0 | 3854 |
rotate4 | pdq | 0.28125 | 60.042 | 0 | 3854 |
rotate4 | phash | 0.265625 | 65.646 | 0 | 3854 |
rotate4 | shrinkhash | 69.4622 | 1.92 | 0 | 3854 |
rotate4 | wavelet | 0.015625 | 0.078 | 0 | 3854 |
vignette | ahash | 0.03125 | 5.475 | 0 | 3854 |
vignette | blockmean | 0.0330579 | 6.461 | 0 | 3854 |
vignette | dhash | 0.0742188 | 14.011 | 0 | 3854 |
vignette | marrhildreth | 0.0954861 | 30.436 | 0 | 3854 |
vignette | pdq | 0.132812 | 100 | 0 | 3854 |
vignette | phash | 0.132812 | 100 | 0 | 3854 |
vignette | shrinkhash | 103.015 | 4.515 | 0 | 3854 |
vignette | wavelet | 0.0234375 | 2.024 | 0 | 3854 |
watermark | ahash | 0.0078125 | 28.464 | 0 | 3854 |
watermark | blockmean | 0.0134298 | 43.15 | 0 | 3854 |
watermark | dhash | 0.078125 | 100 | 0 | 3854 |
watermark | marrhildreth | 0.114583 | 99.248 | 0 | 3854 |
watermark | pdq | 0.28125 | 99.325 | 0 | 3854 |
watermark | phash | 0.289062 | 99.481 | 0 | 3854 |
watermark | shrinkhash | 104.666 | 70.239 | 0 | 3854 |
watermark | wavelet | 0.015625 | 46.653 | 0 | 3854 |
hasher_name | threshold | recall | fpr | n_exemplars |
---|---|---|---|---|
ahash | 0.0078125 | 20.005 | 0 | 38540 |
blockmean | 0.00826446 | 22.003 | 0 | 38540 |
dhash | 0.0898438 | 46.798 | 6.07681e-05 | 38540 |
marrhildreth | 0.102431 | 52.377 | 9.97855e-05 | 38540 |
pdq | 0.265625 | 75.846 | 6.93433e-05 | 38540 |
phash | 0.273438 | 80.106 | 6.56685e-05 | 38540 |
shrinkhash | 60.1166 | 19.538 | 0 | 38540 |
wavelet | 0.0078125 | 16.168 | 0 | 38540 |
API¶
Hashers¶
All hashers from the Hasher
class.
-
class
perception.hashers.hasher.
Hasher
¶ All hashers implement a common set of methods from the Hasher base class.
-
allow_parallel
= True¶ Indicates whether the hashes can be computed in parallel
-
compute_distance
(hash1, hash2, hash_format='base64')¶ Compute the distance between two hashes.
Parameters: - hash1 (
Union
[ndarray
,str
]) – The first hash or vector - hash2 (
Union
[ndarray
,str
]) – The second hash or vector - hash_format – If either or both of the hashes are hash strings, what format the string is encoded in.
- hash1 (
-
compute_parallel
(filepaths, progress=None, progress_desc=None, max_workers=5, isometric=False)¶ Compute hashes in a parallelized fashion.
Parameters: - filepaths – A list of paths to images or videos (depending on the hasher).
- progress – A tqdm-like wrapper for reporting progress. If None, progress is not reported.
- progress_desc – The title of the progress bar.
- max_workers – The maximum number of workers
- isometric – Whether to compute all eight isometric transforms for each image.
-
distance_metric
= None¶ The metric to use when computing distance between two hashes. All hashers must supply this parameter.
-
dtype
= None¶ The numpy type to use when converting from string to array form. All hashers must supply this parameter.
-
hash_length
= None¶ Indicates the length of the hash vector
-
returns_multiple
= False¶ Whether or not this hash returns multiple values
-
string_to_vector
(hash_string, hash_format='base64')¶ Convert hash string to vector.
Parameters: - hash_string (
str
) – The input hash string - hash_format (
str
) – One of ‘base64’ or ‘hex’
- hash_string (
-
vector_to_string
(vector, hash_format='base64')¶ Convert vector to hash string.
Parameters: - vector (
ndarray
) – Input vector - hash_format (
str
) – One of ‘base64’ or ‘hex’
- vector (
-
Images¶
All image hashers inherit from the ImageHasher
class.
-
class
perception.hashers.hasher.
ImageHasher
¶ -
compute
(image, hash_format='base64')¶ Compute a hash from an image.
Parameters: - image (
Union
[str
,ndarray
,Image
,BytesIO
]) – An image represented as a filepath, a PIL image object, or as an np.ndarray object. If it is an np.ndarray object, it must be in RGB color order (note the OpenCV default is BGR). - hash_format – One ‘base64’, ‘hex’, or ‘vector’
Return type: Union
[str
,ndarray
]- image (
-
compute_isometric_from_hash
(hash_string_or_vector, hash_format='base64')¶ For supported hashes, obtain the hashes for the dihedral transformations of the original image. They are provided in the following order:
- Vertical flip
- Horizontal flip
- 180 degree rotation
- 90 degree rotation
- 90 degree rotation and vertical flip
- 90 degree rotation and horizontal flip
- 270 degree rotation
Parameters: - hash_string_or_vector – The hash string or vector
- hash_format – One ‘base64’ or ‘hex’
-
compute_with_quality
(image, hash_format='base64')¶ Compute hash and hash quality from image.
Parameters: - image (
Union
[str
,ndarray
,Image
,BytesIO
]) – An image represented as a filepath, a PIL image object, or as an np.ndarray object. If it is an np.ndarray object, it must be in RGB color order (note the OpenCV default is BGR). - hash_format – One ‘base64’ or ‘hex’
Return type: Tuple
[str
,int
]Returns: A tuple of (hash, quality)
- image (
-
The following image hash functions are included in the package.
-
class
perception.hashers.image.
AverageHash
(hash_size=8)¶ Computes a simple hash comparing the intensity of each pixel in a resized version of the image to the mean. Implementation based on that of ImageHash.
-
class
perception.hashers.image.
PHash
(hash_size=8, highfreq_factor=4, exclude_first_term=False, freq_shift=0)¶ Also known as the DCT hash, a hash based on discrete cosine transforms of images. See complete paper for details. Implementation based on that of ImageHash.
Parameters: - hash_size – The number of DCT elements to retain (the hash length will be hash_size * hash_size).
- highfreq_factor – The multiple of the hash size to resize the input image to before computing the DCT.
- exclude_first_term – WHether to exclude the first term of the DCT
- freq_shift – The number of DCT low frequency elements to skip.
-
class
perception.hashers.image.
WaveletHash
(hash_size=8, image_scale=None, mode='haar')¶ Similar to PHash but using wavelets instead of DCT. Implementation based on that of ImageHash.
-
class
perception.hashers.image.
MarrHildreth
¶ A wrapper around OpenCV’s Marr-Hildreth hash. See paper for details.
-
class
perception.hashers.image.
BlockMean
¶ A wrapper around OpenCV’s Block Mean hash. See paper for details.
-
class
perception.hashers.image.
ColorMoment
¶ A wrapper around OpenCV’s Color Moments hash. See paper for details.
-
class
perception.hashers.image.
PDQHash
¶ The Facebook PDQ hash. Based on the original implementation located at the official repository.
-
class
perception.hashers.image.
DHash
(hash_size=8)¶ A hash based on the differences between adjacent pixels. Implementation based on that of ImageHash.
-
class
perception.hashers.image.
PHashF
(hash_size=8, highfreq_factor=4, exclude_first_term=False, freq_shift=0)¶
-
class
perception.hashers.image.
PDQHashF
¶
Videos¶
All video hashers inherit from the VideoHasher
class.
-
class
perception.hashers.hasher.
VideoHasher
¶ -
compute
(filepath, errors='raise', hash_format='base64')¶ Compute a hash for a video at a given filepath.
Parameters: - filepath – Path to video file
- errors – One of “raise”, “ignore”, or “warn”. Passed to perception.hashers.tools.read_video.
-
hash_from_final_state
(state)¶ Called after all frames have been processed. Returns the final feature vector.
Parameters: state ( dict
) – The state dictionary at the end of processing.Return type: ndarray
-
process_frame
(frame, frame_index, frame_timestamp, state=None)¶ Called for each frame in the video. For all but the first frame, a state is provided recording the state from the previous frame.
Parameters: - frame (
ndarray
) – The current frame as an RGB ndarray - frame_index (
int
) – The current frame index - frame_timestamp (
float
) – The current frame timestamp - state (
Optional
[dict
]) – The state from the last call to process_frame
Return type: dict
- frame (
-
The following video hash functions are included in the package.
-
class
perception.hashers.video.
FramewiseHasher
(frame_hasher, interframe_threshold, frames_per_second=15, quality_threshold=None)¶ A hasher that simply returns frame-wise hashes at some regular interval with some minimum inter-frame distance threshold.
-
compute_batches
(filepath, batch_size, errors='raise', hash_format='base64')¶ Compute hashes for a video in batches.
Parameters: - filepath (
str
) – Path to video file - batch_size (
int
) – The batch size to use for returning hashes - errors – One of “raise”, “ignore”, or “warn”. Passed to perception.hashers.tools.read_video.
- hash_format – The format in which to return hashes
- filepath (
-
hash_from_final_state
(state)¶ Called after all frames have been processed. Returns the final feature vector.
Parameters: state – The state dictionary at the end of processing.
-
process_frame
(frame, frame_index, frame_timestamp, state=None)¶ Called for each frame in the video. For all but the first frame, a state is provided recording the state from the previous frame.
Parameters: - frame – The current frame as an RGB ndarray
- frame_index – The current frame index
- frame_timestamp – The current frame timestamp
- state – The state from the last call to process_frame
-
-
class
perception.hashers.video.
TMKL1
(frame_hasher=None, frames_per_second=15)¶ The TMK L1 video hashing algorithm.
-
hash_from_final_state
(state)¶ Called after all frames have been processed. Returns the final feature vector.
Parameters: state – The state dictionary at the end of processing.
-
process_frame
(frame, frame_index, frame_timestamp, state=None)¶ Called for each frame in the video. For all but the first frame, a state is provided recording the state from the previous frame.
Parameters: - frame – The current frame as an RGB ndarray
- frame_index – The current frame index
- frame_timestamp – The current frame timestamp
- state – The state from the last call to process_frame
-
-
class
perception.hashers.video.
TMKL2
(frame_hasher=None, frames_per_second=15, normalization='matrix')¶ The TMK L2 video hashing algorithm.
-
hash_from_final_state
(state)¶ Called after all frames have been processed. Returns the final feature vector.
Parameters: state – The state dictionary at the end of processing.
-
process_frame
(frame, frame_index, frame_timestamp, state=None)¶ Called for each frame in the video. For all but the first frame, a state is provided recording the state from the previous frame.
Parameters: - frame – The current frame as an RGB ndarray
- frame_index – The current frame index
- frame_timestamp – The current frame timestamp
- state – The state from the last call to process_frame
-
Tools¶
These utility functions are only used by the hashers but are documented here for completeness.
-
perception.hashers.tools.
compute_md5
(filepath)¶ Compute the md5 hash for a file at filepath.
Parameters: filepath – The path to the file Return type: str
-
perception.hashers.tools.
compute_quality
(image)¶ Compute a quality metric, using the calculation proposed by Facebook for their PDQ hash algorithm.
-
perception.hashers.tools.
compute_synchronized_video_hashes
(filepath, hashers, framerates=None, hash_format='base64', use_queue=True)¶ Compute the video hashes for a group of hashers with synchronized frame processing wherever possible.
Parameters: - filepath (
str
) – Path to video file. - hashers (
dict
) – A dictionary mapping hasher names to video hasher objects - hash_format – The format in which to return the hashes
- use_queue – Whether to use queued video frames
- filepath (
-
perception.hashers.tools.
get_common_framerates
(id_rates)¶ Compute an optimal set of framerates for a list of framerates. Optimal here means that reading the video at each of the framerates will allow one to collect all of the frames required with the smallest possible number of frames decoded.
For example, consider if we need to read a video at 3 fps, 5 fps, 1 fps and 0.5 fps. We could read the video 4 times (once per framerate). But a more optimal approach is to read the video only twice, once at 3 frames per second and another time at 5 frames per second. For the 1 fps hasher, we simply pass every 3rd frame of the 3 fps pass. For the 0.5 fps hasher, we pass every 6th frame of the 3 fps pass. So if you pass this function {A: 3, B: 5, C: 1, D: 0.5}, you will get back {3: [A, C, D], 5: C}.
Parameters: id_rates ( dict
) – A dictionary with IDs as keys and frame rates as values.Returns: - A dictionary with framerates as keys and a list of
- ids as values.
Return type: rate_ids
-
perception.hashers.tools.
get_string_length
(hash_length, dtype, hash_format='hex')¶ Compute the expected length of a hash string.
Parameters: - hash_length (
int
) – The length of the hash vector - dtype (
str
) – The dtype of the vector - hash_format – One of ‘base64’ or ‘hex’
Return type: int
Returns: The expected string length
- hash_length (
-
perception.hashers.tools.
read
(filepath_or_buffer)¶ Read a file into an image object
Parameters: filepath_or_buffer ( Union
[str
,ndarray
,Image
,BytesIO
]) – The path to the file or any object with a read method (such as io.BytesIO)
-
perception.hashers.tools.
read_video
(filepath, frames_per_second=None, max_queue_size=128, use_queue=True, errors='raise')¶ Provides a generator of RGB frames, frame indexes, and timestamps from a video. This function requires you to have installed ffmpeg.
Parameters: - filepath – Path to the video file
- frames_per_second (
Union
[str
,float
,None
]) – How many frames to provide for each second of video. If None, all frames are provided. If frames_per_second is “keyframes”, we use ffmpeg to select I frames from the video. - max_queue_size – The maximum number of frames to load in the queue
- use_queue – Whether to use a queue of frames during processing
- errors – Whether to ‘raise’, ‘warn’, or ‘ignore’ errors
Yields: (frame, frame_index, timestamp) tuples
-
perception.hashers.tools.
string_to_vector
(hash_string, dtype, hash_length, hash_format, verify_length=True)¶ Convert hash back to vector.
Parameters: - hash_string (
str
) – The input base64 hash string - dtype (
str
) – The data type of the hash - hash_length (
int
) – The length of the hash vector - verify_length (
bool
) – Whether to verify the string length
- hash_string (
-
perception.hashers.tools.
vector_to_string
(vector, dtype, hash_format)¶ Convert vector to hash.
Parameters: vector ( ndarray
) – Input vector
Benchmarking¶
Tools¶
-
class
perception.tools.
SaferMatcher
(api_key=None, username=None, password=None, url=None, hasher=None, hasher_api_id=None, quality_threshold=90)¶ An object for matching hashes with the known CSAM hashes in the Safer matching service. Please contact safer@wearethorn.org for details on obtaining credentials and information on how match responses are provided.
Here’s a minimalist example:
from perception import hashers, tools hasher = hashers.PHash(hash_size=16) matches = hashers.tools.SaferMatcher( api_key='YOUR_API_KEY', username='YOUR_USERNAME', # You only need to provide password='YOUR_PASSWORD', # an API key OR username/password. url='MATCHING_SERVICE_URL' )
For authentication, you must provide the API key OR username and password pair. If neither is provided, the function will attempt to find them as environment variables with names
SAFER_MATCHING_SERVICE_API_KEY
,SAFER_MATCHING_SERVICE_USERNAME
, andSAFER_MATCHING_SERVICE_PASSWORD
, respectively. You must also provide the URL endpoint for the matching service, either as a keyword argument or as aSAFER_MATCHING_SERVICE_URL
environment variable.Parameters: - api_key (
Optional
[str
]) – A base64 encoded set of matching service credentials - username (
Optional
[str
]) – Matching service username - password (
Optional
[str
]) – Matching service password - url (
Optional
[str
]) – Safer matching service URL - hasher (
Optional
[ImageHasher
]) – A hasher to use for matching - hasher_api_id (
Optional
[str
]) – The hasher ID for finding matches. - quality_threshold (
int
) – The quality threshold filter to use
-
match
(images)¶ Match hashes with the Safer matching service.
Parameters: images ( List
[Union
[str
,Tuple
[Union
[str
,ndarray
,Image
,BytesIO
],str
]]]) – A list of image filepaths or (image_like, image_id) tuples.Return type: dict
Returns: A dictionary of matches. See Safer matching service documentation ( contact Thorn for a copy).
- api_key (
-
perception.tools.
deduplicate
(files, hashers, isometric=False, progress=None)¶ Find duplicates in a list of files.
Parameters: - files (
List
[str
]) – A list of filepaths. - hashers (
List
[Tuple
[ImageHasher
,float
]]) – A list of tuples of the form (hasher, threshold) - isometric (
bool
) – Whether to compare the rotated versions of the images - progress (
Optional
[tqdm
]) – A tqdm progress indicator
Return type: List
[Tuple
[str
,str
]]Returns: A list of duplicated file pairs. To use, you can just remove the first entry of each pair from your dataset. The pairs are provided in the event that you wish to apply further analysis.
- files (
-
perception.tools.
deduplicate_hashes
(hashes, threshold, hash_format='base64', hasher=None, hash_length=None, hash_dtype=None, distance_metric=None, progress=None)¶ Find duplicates using a list of precomputed hashes.
Parameters: - hashes (
List
[Tuple
[str
,Union
[str
,ndarray
]]]) – A list of (id, hash) tuples - threshold (
float
) – A distance threshold - hasher (
Optional
[ImageHasher
]) – A hasher to use for computing distances - progress (
Optional
[tqdm
]) – A tqdm object for reporting progress
Return type: List
[Tuple
[str
,str
]]Returns: A list of duplicated id pairs. To use, you can just remove the first entry of each pair from your dataset. The pairs are provided in the event that you wish to apply further analysis.
- hashes (